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We analyse the homogeneous instabilities in a nematic liquid crystal subjected to plane steady
Couette or Poiseuille � ow in the case when the director is prealigned perpendicular to the
� ow plane taking into account weak anchoring at the con� ning surfaces. The critical shear
rate decreases for decreasing anchoring strength and goes to zero in the limit of torque-free
boundary conditions. For Poiseuille � ow two types of instability arise depending on the
values of the azimuthal (Wa ) and polar (Wp ) surface anchoring strengths. The critical line in
(Wa , Wp ) space which separates the two instabilities regimes is obtained.

1. Introduction nematodynamic equations for any shear rate. The state
can change only via a symmetry-breaking instability.Over the last decade the study of surface anchoring

in nematic liquid crystals (NLCs) for diŒerent types The type of instability strongly depends on the sign of
the Leslie viscosity coe� cient, a3 . The case of a negativeof con� ning substrates has attracted much attention.

In particular, a change of anchoring strength strongly a3 (� ow-aligning materials) and strong anchoring of the
director was investigated theoretically by Leslie [7] andin� uences the orientational behaviour and dynamic

response of NLCs under external electric and magnetic Dubois-Violette and Manneville [5, 8–10]. They showed
that in the absence of external � elds the � rst instability� elds. This changes the switching times, which play an

important role in applications [1]. The hydrodynamic is homogeneous in both steady Couette [7, 8] and
Poiseuille [9] � ows. The theoretical results were found� ow is a crucial ingredient for the dynamic response

and switching characteristics of liquid crystal devices. to be in good agreement with the experiments of Pieranski,
Guyon and coworkers [11–13]. In Couette � ow, aThe anchoring characteristics can also be studied in
su� ciently strong additional magnetic � eld appliedorientational phenomena induced by hydrodynamic
parallel to the initial director orientation was found to� ow. Recently in fact, the surface orientational transition
change the type of instability into a spatially periodiccaused by oscillatory shear � ow was found [2] and the
one where rolls develop [11, 13]. This is in contrast toin� uence of weak anchoring on the linear response of
the case of Poiseuille � ow, for which a magnetic � eldthe NLC to oscillatory � ows was studied [3]. To date,
does not change the type of instability [14]. Well abovethe studies of orientational bulk instabilities in NLCs
the threshold of the homogeneous instability in Poiseuilleunder hydrodynami c � ow have been restricted to the case
� ow, rolls were observed to develop in a secondaryof strong surface anchoring (� xed director orientation
instability [15]. In the case of a positive a3 (non-at the con� ning plates) [4–6].
� ow-aligning materials) , according to the mechanism ofIn this paper the in� uence of surface anchoring on
Pieranski and Guyon, one has no homogeneous instabilitythe homogeneous instabilities in NLCs subjected to
and only rolls are expected [11]. Since for these materialssteady � ow of Couette and Poiseuille types is studied
there is also a tumbling motion [16], the orientationaltheoretically for the case when the director at the
behaviour of NLCs can be quite complex.bounding plates is oriented perpendicular to the � ow

Here we focus on � ow-aligning nematics. Starting fromplane. This is the simplest geometry because the initial
the standard set of nematodynamic equations in thestate with the director oriented everywhere perpendicular
Leslie–Ericksen formulation [4], the basic equationsto the � ow plane is, by symmetry, a solution of the
describing the homogeneous instabilities are presented
(§ 2) taking into account arbitrary surface anchoring*Author for correspondence;

e-mail: oleg.tarasov@uni-bayreuth.de strength. Full semi-analytical solutions together with
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834 O. S. Tarasov et al.

approximate expressions for the critical shear rate at The surface anchoring of the director is described in
terms of a surface energy per unit area, Fs , which has awhich the homogeneous instabilities develop are obtained

for steady Couette (§ 3 ) and Poiseuille (§ 4) � ows. In § 5 minimum when the director at the surface is oriented
along the easy axis (parallel to the y axis in our case).we discuss the results.
It is convenient to characterize the surface anchoring by
a ‘polar’ anchoring strength Wp pertaining to out-of-2. Basic equations
substrate-plane director deviations, and an ‘azimuthal’We consider a NLC layer of thickness d sandwiched
anchoring strength Wa , related to distortions within thebetween two parallel in� nite plates. The origin of a
substrate plane. A phenomenological expression for theCartesian coordinate system is placed at the centre of
surface energy Fs can be written in terms of an expansionthe layer with the z axis perpendicular to the bounding
with respect to (n Õ n0 ). For small director deviationsplates. Steady Couette � ow is generated by one plate
from the easy axis, one obtains for the surface energy(at z 5 d/2) moving with constant velocity V 0 along the

x direction and the other plate (at z 5 Õ d/2 ) � xed.
Steady Poiseuille � ow is obtained when a constant Fs 5

1
2

Wan2
x
1

1
2

Wp n2
z
, Wa > 0, Wp > 0. (6)

pressure gradient DP/Dx is applied along the x axis. The
con� ning plates provide a director orientation along the The boundary conditions for the director perturbations
y axis. The basic state is given by the stationary homo- can be obtained from the surface torques balance
geneous solution of the standard set of nematodynamic equation
equations (Leslie–Ericksen equations [4]):

Ô K22 n
x,z

1
Fs
n
x

5 0, Ô K11n
z,z

1
Fs
n
z

5 0,n0 5 (0, 1, 0), v0 5 (v0
x
, 0, 0) (1 )

where, for Couette � ow, for z 5 Ô d/2. (7)

v0
x

5 V 0 (1/2 1 z/d ) (2 ) Introducing the dimensionless quantities

and for Poiseuille � ow,

v0
x 5 Õ

DP

Dx
d2

2g3
(1/4 Õ z2 /d2 )

zÄ 5
z
d

, SÄ 5 btd S, td 5
( Õ a2 )d2

K22

V
y

5
b2btd

d
v
y
, N

x
5 bn

x
, N

z
5 n

z

(8)

and g3 5 a4 /2 with a4 the corresponding Leslie viscosity.
In order to investigate the stability of solution (1) we

with
linearize the nematodynamic equations [4] with respect
to perturbations that are homogeneous in the plane of

b2 5
a3
a2

K22
K11

1
b

, b 5
g1
g3

, (9)the layer:

n 5 n0 1 (n
x
, n

y
, n

z
), v 5 v0 1 (v

x
, v

y
, v

z
) (3 ) equations (4) can be rewritten in the form

where n
i
, v

i
(i 5 x, y, z) are functions of z. We are looking

for the existence of a stationary solution of the linearized
V

y,z z
Õ (1 Õ b)(SÄ N

x
)
,z

5 0

SÄ N
z
1 N

x,z z
5 0

bSÄ N
x
1 N

z,z z
1 V

y,z 5 0.

(10)nematodynamic equations, which signals the onset of a
stationary (i.e. nonoscillatory) instability. The linearized
equations are:

For the shear rate SÄ one has, for Couette � ow,

SÄ 5 a2 , a2 5
V 0td

d
b (11)

g1v
y,z z

1 (g1 Õ g3 ) (Sn
x
)
,z

5 0

a2Sn
z

Õ K22 n
x,z z

5 0

a3Sn
x

Õ K11n
z,z z

1 a3v
y,z 5 0

(4 )

and for Poiseuille � ow,
where S 5 v0

x,z
is the shear rate, g1 5 (a3 1 a4 1 a6 )/2 and

K11 , K22 are the elasticity coe� cients for ‘splay’ and ‘twist’ SÄ 5 Õ a2 z, a2 5 Õ
DP

Dx
td d
g3

b. (12)
deformations, respectively. The notation f

,z
; d f /dz is

used throughout.
The boundary conditions (5) and (7) reduced to

The boundary conditions for the y-component of the
velocity perturbation are Ô N

x,z
1 waN

x 5 0, Ô N
z,z

1 wp N
z 5 0,

V
y

5 0, at z 5 Ô 1/2
(13)

v
y
(z 5 Ô d/2) 5 0. (5 )
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835In� uence of weak anchoring in nematics

where The boundary determinant condition now gives

wa 5 Wad/K22 , wp 5 Wp d/K11 . (14) a3
c b sinh (ac /2) sin (ac /2) 1

1
2

a2
c b(wa 1 wp )

In the limit of strong anchoring (wa , wp � ) one
Ö [cosh (ac /2) sin (ac /2) Õ cos (ac /2) sinh (ac /2)]

has N
x 5 N

z 5 0 at z 5 Ô 1/2 whereas for torque-free
boundary conditions (wa , wp � 0) N

x,z 5 N
z,z 5 0 at the Õ {acb cosh (ac /2) cos (ac /2)

boundaries. From equations (14) one can see that by
1 (1 Õ b)[sinh (ac /2) cos (ac /2)

changing the thickness d, the dimensionless anchoring
strengths wa and wp can be varied, the ratio wa /wp 1 sin (ac /2) cosh (ac /2)]}wawp 5 0. (18)
remaining � xed.

It should be noted, that the expressions (16) and (18)
Solving the system of linear ordinary diŒerential

are both symmetric under exchange of wa and wp . This
equations (10) with boundary conditions (13) one can

results from the fact that N
x

and N
z

have the same
obtain the critical value of the shear rate a2

c , at which symmetry. We found that for MBBA material parameters
the initial state (1) loses stability, and determine the at 25 ß C [17] (b 5 0.58) the critical shear rate for the
in� uence of anchoring strengths wa and wp on a2

c . odd mode is systematically higher than for the even
mode, so there is no transition between them under a
variation of the surface anchoring. For strong anchoring3. Couette � ow
(wa 5 wp 5 ) the expression for the critical shear rateIn this case the shear rate SÄ is independent of z (11),
of the even solution (18) recovers the result obtained byso that the system (10) can be solved using the standard
Leslie [7]. Weak surface anchoring reduces the criticaltheory of ordinary diŒerential equations with con-
shear rate compared with the case of strong boundarystant coe� cients. Further, the {z � Õ z} symmetry of
conditions. In the limit of one of the surface anchoringequations (10) allows for two possible types of solutions:
strengths going to zero (wa

� 0 or wp
� 0) one has

a2
c

� 0. In � gure 1 the critical shear rate a2
c for the evenI: {V

y
-even; N

x
, N

z
-odd}-‘odd’ solution

solution calculated from equation (18), using the material
II: {V

y
-odd; N

x
, N

z
-even}-‘even’ solution. parameters of MBBA (b 5 0.58), is shown as a function

of 1/wa , 1/wp .
We will always classify the solutions by the z-symmetry

In order to obtain an easy-to-use expression for the
of the x-component of the director perturbation N

x
. For

critical shear rate of the relevant even mode as a function
the odd solution one obtains

of the surface anchoring strengths, one can use the
single-mode approximation in the spirit of a Galerkin
expansion [18]. We choose

V
y

5 C1 (1 Õ b)a cosh (az) Õ C2 (1 Õ b)a cos (az) 1 C3
N

x 5 C1 sinh (az) 1 C2 sin (az)

N
z 5 Õ C1 sinh (az) 1 C2 sin (az).

V
y 5 C1 sin (2pz)

N
x

5 C2[wa cos (pz) 1 p]

N
z 5 C3[wp cos (pz) 1 p]

(19)
(15)

Taking into account the boundary conditions (13) the
solvability condition for the C

i
(‘boundary determinant’

equated to zero) gives the expression for the critical
shear rate

2wawp sinh (ac /2) sin (ac /2) 1 ac (wa 1 wp )

Ö [cosh (ac /2) sin (ac /2) 1 cos (ac /2) sinh (ac /2)]

1 2a2
c cosh (ac /2) cos (ac /2) 5 0. (16)

For the even solution one obtains

V
y

5 C1 (1 Õ b)a sinh (az) 1 C2 (1 Õ b)a sin (az) Õ C3a2bz

N
x 5 C1 cosh (az) 1 C2 cos (az) 1 C3

N
z 5 Õ C1 cosh (az) 1 C2 cos (az).

Figure 1. Critical shear rate of Couette � ow vs. anchoring
strengths: b 5 0.58 (MBBA).(17)
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836 O. S. Tarasov et al.

which satisfy boundary conditions (13). Substituting this where C1 and C2 are constants to be determined from
the boundary conditions (13). Substitution of equationsansatz into equations (10) where SÄ 5 a2 and solving the

algebraic system for C
i
, (i 5 1, 2, 3) obtained after pro- (24) into (13) gives the criterion for the threshold shear

rate,jecting the � rst of equations (10) onto the � rst mode of
equations (19), the second equation onto the second
mode, etc., one gets

waAi+ 1 a2/3
c Ai+

,Z
waBi+ 1 a2/3

c Bi+
,Z

5
wp Ai Õ 1 a2/3

c Ai Õ
,Z

wp Bi Õ 1 a2/3
c Bi Õ

,Z
. (25)

Here
a2

c 5 3p3[wawp (4 1 wa ) (4 1 wp )/( p1p2 )]1/2

p1 5 wawp 1 4(wa 1 wp ) 1 2p2

p2 5 16wawp (1 Õ b) 1 9p2bp1 .

(20)

Ai Ô 5 AiA1
2

a2/3
c B Ô AiA Õ

1
2

a2/3
c B ,

Bi Ô 5 BiA1
2

a2/3
c B Ô BiA Õ

1
2

a2/3
c B

(26)The single-mode approximation (20) gives almost the
same values for a2

c as equation (18) (the relative error is
smaller than 1%), so that they could not be diŒerentiated
in � gure 1. and similarly for Ai Ô

,Z
and Bi Ô

,Z
. The limit of strong

anchoring (wa � , wp � ) gives the result of Dubois-
4. Poiseuille � ow Violette and Manneville [9]

In the case of Poiseuille � ow, the shear rate SÄ is given
by equation (12) and the symmetry properties of system
(10) give us the following two types of solutions:

AiA1
2

a2/3
c B

BiA1
2

a2/3
c B

5

AiA Õ
1
2

a2/3
c B

BiA Õ
1
2

a2/3
c BI: {V

y
, N

x
-odd; N

z
-even}-‘odd’ solution

II: {V
y
, N

x
-even; N

z
-odd}-‘even’ solution.

leading to a2
c 5 102.59. The fact that N

x
and N

z
have

The odd solution corresponds to the splay-mode and the diŒerent z-symmetry leads in equation (25) to an asym-
even solution to the twist-mode in the notation of metry in the dependence of the critical shear rate on waDubois-Violette and Manneville [9]. Integration of the and wp , in contrast to the case of Couette � ow. The
� rst equation in system (10) gives critical shear rate, equation (25), retains a � nite value

when the polar anchoring strength wp (which mainlyV
y,z

5 K Õ (1 Õ b)a2zN
x

(21)
controls N

z
perturbations) vanishes, whereas a2

c � 0 if
the azimuthal anchoring strength wa

� 0.with K 5 0 for the even solution. For the odd solution
For the odd solution with a non-zero K the solutionthe integration constant K must be non-zero (except for

of equations (22) has the following formb 5 1, see later). After eliminating V
y,z

from the third
equation in (10) one arrives at

N
x

5 kK{C1Ai Õ (Z ) 1 C2Bi Õ (Z ) 1 Gi Õ (Z )}

N
z

5 kK{C1Ai+ (Z ) 1 C2Bi+ (Z ) 1 Gi+ (Z )}
(27)a2zN

z
Õ N

x,z z
5 0

a2zN
x

Õ N
z,z z

5 K.
(22)

where

Following [9] we perform the transformation Z 5 a2/3 z
and introduce new variables U 5 N

x
1 N

z
, V 5 N

x
Õ N

z
,

k 5 pa Õ 4/3 /2, Ai Ô (Z ) 5 Ai(Z ) Ô Ai( Õ Z ) etc.,

for Bi Ô (Z ) and Gi Ô (Z ).leading to

(28)U ,
ZZ

Õ ZU 5 Õ Ka Õ 4/3

V ,
ZZ

1 ZV 5 Ka Õ 4/3.
(23)

The coe� cients C
i
in equations (27) are determined from

the boundary conditions (13). Integrating equation (21)
The general solution of (23) can be expressed in terms and taking into account the boundary conditions
of Airy functions Ai (Z ), Bi(Z ), Gi (Z ) [19]. V

y
(z 5 Ô 1/2) 5 0, one obtains the expression for the

Let us � rst consider the case of the even solution critical shear rate of the odd mode,
(K 5 0), then one has

K Õ (1 Õ b)a2
c P 1/2

Õ 1/2
zN

x
(z; a2

c , wa , wp ) dz 5 0. (29)N
x 5 C1[Ai(Z ) 1 Ai( Õ Z)] 1 C2[Bi(Z ) 1 Bi( Õ Z )]

N
z 5 C1[Ai(Z ) Õ Ai( Õ Z)] 1 C2[Bi(Z ) Õ Bi( Õ Z )]

Since N
x

is proportional to K, this undetermined
integration constant falls out from equation (29). From(24)
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837In� uence of weak anchoring in nematics

thermodynamical conditions [4, 20] the parameter b and after substituting (30) into (22) and projection, one
obtainsmust be positive, but is otherwise not restricted. The

point b 5 1 requires special consideration. In this case,
from equation (21) and boundary conditions for V

y
, it a2

c 5 6 Ó 3p4[wa (4 1 wa ) (3p2 1 20wp 1 3w2
p )/p2

1]1/2

p1 5 16wawp 1 9p2 (wa 1 wp ) 1 72p2.follows that K 5 0 and V
y 5 0, so that one should solve

equations (22) keeping the symmetry of N
x

and N
z (31)corresponding to the odd solution. In other words, if

b 5 1 then one has the homogeneous instability of odd
For the odd mode we choosetype with zero velocity perturbation, as in the case of

a Fréedericksz transition. Moreover, in the case b 5 1
equations (22) became invariant with respect to change

N
x 5 C1[wa sin(2pz) 1 2p sin (pz)]

N
z 5 C2[wp cos (pz) 1 p].

(32)
{N

x
u N

z
}, so that the critical shear rates for even and

odd solutions are the same up to transposition {wa u wp}.
Substituting these into (22) one � nds the coe� cients C1The instability of the odd mode is mainly controlled
and C2 and then from (29) one obtains,

by the polar anchoring strength wp . In the limit of zero
azimuthal anchoring strength, wa � 0, one has a � nite
critical shear rate, whereas a2

c � 0 for the polar anchoring
a2

c 5 6 Ó 3p4[wp (4 1 wp ) (3p2 1 20wa 1 3w2
a )/( p1p2 )]1/2

p2 5 bp1 1 (1 Õ b) (9p2 Õ 144 Õ 2wa )wp .strength wp � 0.
The critical shear rate a2

c for the even solution,
(33)

equation (25), and odd solution, equation (29), have
been calculated for the material parameters of MBBA The approximate expressions (31) and (33) give system-
for various values of wa and wp (� gure 2). Depending on atically higher values for the critical shear rate com-
the azimuthal and polar surface anchoring strengths, pared with (25) and (29), speci� cally, about 10% for
one can have a diŒerent z-symmetry of the � rst unstable both modes. Equating (31) and (33) one can obtain an
mode. The critical line in (wa , wp ) space corresponds to approximate expression for the critical line in the (wa , wp )
the crossover between the two types of unstable solutions. plane corresponding to the crossover between the critical

Since the expressions (25) and (29) for the critical even and odd modes (see � gure 2). We now write
shear rates of the two possible unstable modes are quite ba 5 1/wa , bp 5 1/wp . For strong azimuthal anchoring
complicated we use a single-mode Galerkin approximation (ba 5 0) the transition from even to odd mode takes
in order to obtain easy-to-use formulae. place at some critical value of polar anchoring strength;

For the even mode we can use equations (22) with bp 5 bp0 , where bp0 is the solution of the algebraic
K 5 0. Assuming, equation

9p4bb3
p0 1 2p2 (39b Õ 19)b2

p0
N

x 5 C1[wa cos(pz) 1 p]

N
z 5 C2[wp sin(2pz) 1 2p sin (pz)]

(30)

1 C Õ 9p2 (1 Õ b) 1 120b Õ
232
3 Dbp0 Õ 18(1 Õ b) 5 0.

(34)

For MBBA material parameters one � nds bp0 5 0.307.
Assuming the deviation (bÃ a , bÃ p ) from (0, bp0 ) to be small,
one has up to � rst order in bÃ a , bÃ p for the critical line

c1 (bp0 1 bÃ p ) 1 c2bÃ a 5 0 (35)

where

c1 5 27bp4b2
p0 1 4p2 (39b Õ 19)bp0

Õ 9p2 (1 Õ b) 1 120b Õ
232
3

c2 5 108bp4b3
p0 1 p2 (9bp2 1 936b Õ 680)b2

p0

Õ 36(3p2 1 40)(1 Õ b)bp0 1 216b Õ
776
3

.

(36)

Figure 2. Critical shear rate of Poiseuille � ow vs. anchoring
strengths: b 5 0.58 (MBBA).
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838 O. S. Tarasov et al.

The results for the critical line for the crossover between the sign of the dielectric anisotropy of the NLC, the
electric � eld will stabilize or destabilize n

z
� uctuations andeven and odd critical modes obtained from the numerical

solutions of equations (25) and (29) and the approximation aŒect the critical shear rate diŒerently for diŒerent values
of the polar and azimuthal anchoring strengths. This study(35) are shown in � gure 3.

Note, that ba 5 1/wa and bp 5 1/wp are inversely pro- is in progress. The advantage of using measurements of
the critical shear rate for the determination of polar andportional to the thickness d of the NLC layer. Therefore,

by varying the cell thickness, one can cross the critical azimuthal anchoring strengths, compared with the other
methods (Fréedericksz transition, orientational transitionline separating the two regimes. For that purpose it

is necessary to have the ratio bp /ba ; K11Wa /(K22Wp ) with hybrid orientation, small angle light scattering) , is
that here one does not need to modify (or rebuild) thelarger than the slope of the critical line (~ Õ c2 /c1 ).

Using the material parameters of MBBA one obtains experimental set-up in order to obtain Wp and Wa at
the same time.Wa /Wp > Õ c2K22 /(c1K11 ) 5 2.28 (Wa /Wp > 1.78 from

numerical results). For small values of wa and wp , the It would be particularly interesting to investigate
experimentally the orientational behaviour of NLC undercrossover is given by wa 5 wp /b. As was said above,

if b 5 1, equations (22) are invariant with respect to steady Poiseuille � ow for a cell with Wp , Wa close to
the crossover line separating critical modes of diŒerent{N

x
u N

z
}. This means that the crossover line for b 5 1

is exactly de� ned by wa 5 wp . The same result follows symmetry.
from the approximate formulae (31) and (33).

Financial support of Deutscher Akademischer
5. Conclusions and discussion Austauschdienst (DAAD), DFG (Grant Kr690/14-1)

It was found that changes of the anchoring strengths and INTAS (Grant 96-498) are gratefully acknowledged.
can cause a crossover between two types of homo- O.T. and A.K. wish to thank the University of Bayreuth
geneous instability induced by steady Poiseuille � ow, for its hospitality.
in contrast to the case of steady Couette � ow, where
the � rst unstable mode is always the even one. Semi-

References
analytical expressions for the critical shear rates for both

[1] See, for example: Chigrinov, V. G ., 1999, L iquid Crystals
Poiseuille and Couette � ow are presented, together with Devices: Physics and Applications (New York: Artech
simple approximate formulae of good accuracy. House).
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